

1553 3 (C) PART(B)

ALGEBRA Part-6

22/10/2024 08:00 AM

Linear Sum of Subspaces

If W_1 and W_2 are two subspaces of a vector space V(F), then the Linear sum of W_1 and W_2 is denoted by

यदि W_1 और W_2 एक सदिश समष्टि V(F) के दो उपसमष्टि हैं, तो W_1 और W_2 का रैखिक योग इस प्रकार दर्शाया जाता है

 W_1+W_2 and it is defined as, $W_1+W_2=\{w_1+w_2:w_1\in W_1 \text{ and } w_2\in W_2\}$

 $W_{-1} + W_{2}$ और इसे इस प्रकार परिभाषित किया जाता है, $W_{1} + W_{2} = \{W_{1} + W_{2} : W_{1} \in W_{1} \text{और } W_{2} \in W_{2}\}$

Result / Theorem

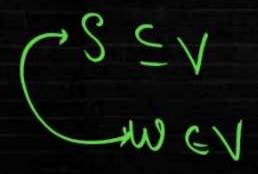
The Linear sum of two subspaces W_1 and W_2 is also a subspace of the vector space V(F).

दो उप-स्थानों W_1 और W_2 का रैखिक योग भी सिंदश स्थान V(F) का एक उप-स्थान है।

Subspace Generated by a Set

Let V(F) be a vector space and $S \subseteq V$. Then W is said to be subspace generated by S, if W is the smallest subspace of V containing S and is denoted by $W = \langle S \rangle$

मान लें कि V(F) एक सदिश समष्टि है और S⊆V. तब W को S द्वारा जनित उपसमष्टि कहा जाता है, यदि W, S को समाहित करने वाला V का सबसे छोटा उपसमष्टि है और इसे W=(S) द्वारा दर्शाया जाता है



Result / Theorem

The <u>Linear sum of two subspaces</u> W_1 and W_2 of a vector space V(F) is a subspace generated by the union of W_1 and W_2 , i.e $W_1 + W_2 = \langle W_1 \cup W_2 \rangle$

एक सिदश समिष्ट V(F) के दो उपसमिष्ट W_1 और W_2 का रैखिक योग W_1 और W_2 के किया से उत्पन्न एक उपसमिष्ट है, अर्थात $W_1 + W_2 = \langle W_1 \cup W_2 \rangle \stackrel{\text{20}}{\sim} W_1$

Direct Sum of Subspaces

A vector space V is said to be the direct sum of its two subspaces $\underline{W_1}$ and $\underline{W_2}$ if every $\underline{v} \in \underline{V}$ can be uniquely expressed as

एक सिदश समिष्ट V को उसके दो उपसमिष्ट W_1 और W_2 का प्रत्यक्ष योग कहा जाता है यदि प्रत्येक $v \in V$ को विशिष्ट रूप से इस प्रकार व्यक्त किया जा सकता है

$$v = w_1 + w_2$$
, where $w_1 \in W_1$ and $w_2 \in W_2$

Note:-

The direct sum of W_1 and W_2 is denoted by $W_1 \oplus W_2$ and it is write as $V = W_1 \oplus W_2$

 W_1 और W_2 का सीधा योग $W_1 \oplus W_2$ द्वारा दर्शाया जाता है और इसे $V = W_1 \oplus W_2$ के रूप में लिखा जाता है

ANB = \$

Disjoint Subspaces

Let V(F) be a vector space. Two subspace W_1 and W_2 of V are said to be disjoint if their intersection is the null space (Zero space). i.e $W_1 \cap W_2 = \emptyset$ or \circ

मान लीजिए V(F) एक सदिश समष्टि है। V के दो उपसमष्टि W_1 और W_2 को असंयुक्त कहा जाता है यदि उनका प्रतिच्छेद शून्य समष्टि (शून्य समष्टि) है। अर्थात $W_1 \cap W_2 = \{0\}$.

Result / Theorem

The vector space V(F) is the direct sum of its subspaces W_1 and W_2 if

सदिश समष्टि V(F) अपने उपसमष्टि W_1 तथा W_2 का प्रत्यक्ष योग है यदि और केवल यदि

$$V = W_1 + W_2$$
 and $W_1 \cap W_2 = 0$

Example:- To understand Direct sum and Linear sum

Case-1

If $W_1 = \{(a,b,0): a,b \in R\}, W_2 = \{(0,0,c): c \in R\}$ are two subspaces of $V_3(R) = \{(a,b,c): a,b,c \in R\}$, then any vector $(a,b,c) \in V_3(R)$ can be uniquely expressed as

$$(a,b,c) = (a,b,0) + (0,0,c)$$

 $V_3 = W_1 \oplus W_2$, which represents the Direct Sum.

Case-2

If $W_1 = \{(a, b, c): a, b \in R\}$, $W_2 = \{(a, 0, c): a, c \in R\}$ are two subspaces of $V_3(R) = \{(a, b, c): a, b, c \in R\}$, then any vector $(a, b, c) \in V_3(R)$ can be expressed as

(i)
$$(\underline{a}, b, c) = (\frac{a}{2}, b, 0) + (\frac{a}{2}, 0, c)$$
, where $(\frac{a}{2}, b, 0) \in W_1$ and $(\frac{a}{2}, 0, c) \in W_2$

(ii)
$$(\underline{a}, b, c) = \left(\frac{\underline{a}}{\underline{4}}, b, 0\right) + \left(\frac{3\underline{a}}{\underline{4}}, 0, c\right)$$
, where $\left(\frac{\underline{a}}{\underline{4}}, b, 0\right) \in W_1$ and $\left(\frac{3\underline{a}}{\underline{4}}, 0, c\right) \in W_2$

Here, we observed that in case -2 any vector (a, b, c) of V_3 can-not be uniquely expressed as the sum of elements of W_1 and W_2 . Hence it shows the Linear sum.

यहाँ, हमने देखा कि केस -2 में V_3 का कोई भी वेक्टर $(a,b,c)W_1$ और W_2 के तत्वों के योग के रूप में विशिष्ट रूप से व्यक्त नहीं किया जा सकता है। इसलिए यह रैखिक योग दर्शाता है।