

D\$\$\$BTCTPART(B)

ALGEBRA

15/10/2024 08:00 AM

Introduction:-

In this Class -1, we will discuss the following Concepts इस कक्षा -1 में, हम निम्नलिखित अवधारणाओं पर चर्चा करेंगे

- Sub Matrix of a Matrix
- **✓** Minors of a Matrix
- > Rank of Matrix
- > Method to find Rank of Matrix
- > Determinant Method (Shortcut Method)

Sub Matrix of a Matrix

Let A be any matrix of order mxn, then a Matrix B obtained by deleting some rows or some columns or both of a Matrix A, is called a sub-matrix of matrix A.

मान लीजिए A कोटि mxn का कोई आव्यूह है, तो आव्यूह A की कुछ पंक्तियों या कुछ स्तंभों या दोनों को हटाकर प्राप्त आव्यूह B को आव्यूह A का उप-मैट्रिक्स कहा जाता है।

For Example:-

Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 2 \end{bmatrix}$$
 be a matrix of order 3×3 , then Matrix $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ is a

sub matrix of A as it is obtained after deleting third row of matrix A.

मान लें कि
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
 क्रम 3×3 का एक आव्यूह है, तो आव्यूह $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ A

का एक उप आव्यूह है क्योंकि यह आव्यूह A की तीसरी पंक्ति को हटाने के बाद प्राप्त होता है।

Minors of a Matrix

If A be any matrix of order mxn, then the determinant of every square sub-matrix of A is called a minor of the matrix A.

यदि A क्रम mxn का कोई भी मैट्रिक्स है, तो A के प्रत्येक वर्ग उप-मैट्रिक्स के निर्धारक को मैट्रिक्स A का माइनर कहा जाता है।

Note:- The order of the square sub-matrix is called the order of minor.

वर्ग उप-मैट्रिक्स के क्रम को लघु का क्रम कहा जाता है।

For Example:-

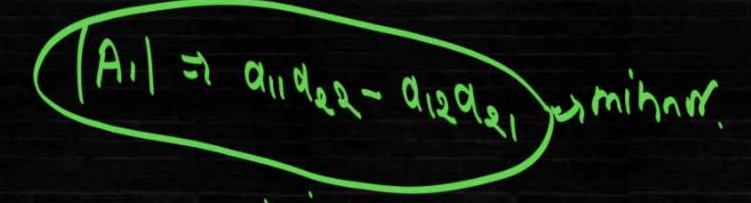
Let
$$A=\begin{bmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{bmatrix}$$
 be a matrix of order 3×3 , then By deleting any

one row and any one column, we get minors of order 2.

मान लें
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
क्रम 3×3 का एक आव्यूह है, तब किसी एक पंक्ति

और किसी एक स्तंभ को हटाने पर, हमें क्रम 2 के लघु आव्यूह प्राप्त होते हैं।

$$A_1 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
; $A_2 = \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$; $A_3 = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$ etc.



Rank of Matrix:-

Let A be any non-zero matrix of order mxn, then a positive integer ' r ' is called Rank of A if

मान लीजिए A, mxn क्रम का कोई भी शून्येतर मैट्रिक्स है, तो एक धनात्मक पूर्णांक 'r' को A का रैंक कहा जाता है यदि

1 A has atleast one non-zero minor of order ' r ' and Every minor of order r+1 of A, if any, is zero.

A में कम से कम एक शून्येतर माइनर है जिसका क्रम 'r' है और A का r+1 क्रम का प्रत्येक माइनर, यदि कोई हो, शून्य है।

In other words,

Rank of matrix is the highest order of a non-zero minor of the matrix.

मैट्रिक्स का रैंक मैट्रिक्स के गैर-शून्य माइनर का उच्चतम क्रम है।

Note:-

- 1 The Rank of a matrix is denoted by $\rho(A)$. मैट्रिक्स की रैंक को $\rho(A)$ द्वारा दर्शाया जाता है।
- 2 If A be a Zero matrix, then $\rho(A) = 0$ यदि A शून्य मैट्रिक्स है, तो $\rho(A)=0$
- 3 If A be any non-zero matrix, then $\rho(A) \ge 1$. यदि A कोई शून्येतर मैट्रिक्स है, तो $\rho(A) \ge 1$.
- 4 If A be a non-singular matrix of order ' n ' then $\rho(A) = n$ यदि A क्रम 'n' का एक त्पुत्रम्भाप मैट्रिक्स है, तो $\rho(A) = n$
- 5 If I be an Identity matrix of order ' n ' then $\rho(I) = n$ यदि । क्रम 'n' का एक पहचान मैट्रिक्स है, तो $\rho(I)$ =n

6 The Rank of a diagonal matrix is equal to the number of non-zero elements in the diagonal.

विकर्ण मैट्रिक्स की रैंक विकर्ण में शून्येतर तत्वों की संख्या के बराबर होती है।

7 When A is a non-zero matrix of order mxn, then Rank of $A \le \min(m,n)$

जब A क्रम mxn का एक शून्येतर मैट्रिक्स है, तो A≤min(m,n) की रैंक

8 When A is a non-zero square matrix of order ' n ' and जब A क्रम 'n' का एक शून्येतर वर्ग मैट्रिक्स है और

If
$$|A| \neq 0$$
, then $\rho(A) = n$

If
$$|A| = 0$$
, then $\rho(A) < n$.

Methods to find Rank of Matrix

- 1. Determinant Method (Shortcut Method) निर्धारक विधि (शॉर्टकट विधि)
- 2. Echelon form OR Triangular form Method यो त्रिकोणीय रूप विधि
- 3. Normal form OR Canonical form Method सामान्य रूप या

(C). Determinant Method (Shortcut Method)

When we try to find out Rank of a Matrix. Generally, we get two types of a matrices

जब हम किसी मैट्रिक्स की रैंक जानने की कोशिश करते हैं। आम तौर पर, हमें दो प्रकार के मैट्रिक्स मिलते हैं

- (1) Square matrix of order n'
- (2) Rectangular matrix of order $m \times n$

Rank of Square Matrix of order ' 1'

Rank of a non-zero square matrix of order ' 1 ' is always ' 1 ' क्रम ' 1 ' वाले शून्येतर वर्ग मैट्रिक्स की रैंक हमेशा ' 1 ' होती है

For Example:-

Let A = [2] be a square matrix of order ' 1 ' मान लीजिए A = [2] क्रम '1' का एक वर्ग मैट्रिक्स है

Here, $|A| \neq 0$, it means matrix A has non-zero minor of order '1' and hence Rank of matrix A = 1.

यहाँ, |A|≠0, इसका मतलब है कि मैट्रिक्स A में क्रम '1' का गैर-शून्य माइनर है और इसलिए मैट्रिक्स A की रैंक = 1 है।

Rank of Square Matrix of order ' 2 '

Rank of a non-zero square matrix A of order ' 2 ' is either 2 or 1.

क्रम ' 2 ' वाले शून्येतर वर्ग मैट्रिक्स A का रैंक या तो 2 या 1 है।

Rank of A =
$$\begin{cases} 2 & \text{, if } |A| \neq 0 \\ 1 & \text{, if } |A| = 0 \end{cases}$$

Example-1

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}_{2 \times 4}$$

Here, $|A| = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}_{2 \times 2} = 4 - 6 = \boxed{-2 \neq 0}$

Thus Matrix A has non-zero minor of order '2'

Hence Rank of Matrix A=2

इस प्रकार मैट्रिक्स A में ' 2 ' क्रम का गैर-शून्य माइनर है।

अतः मैट्रिक्स A की रैंक = 2

Example-2

Let
$$A = \begin{bmatrix} 3 & 2 \\ 6 & 4 \end{bmatrix}_{2 \times 2}$$

Here, $|A| = \begin{vmatrix} 3 & 2 \\ 6 & 4 \end{vmatrix} = 12 - 12 = \boxed{0}$

Therefor Rank of matrix A must be less than 2.

इसलिए मैट्रिक्स A की रैंक 2 से कम होनी चाहिए।

Also, we have atleast one non-zero minor of order ' 1 ' i.e |3|, |2|, |6| and |4| all these are non-zero minors of order ' 1'

इसके अलावा, हमारे पास क्रम ' 1 ' का कम से कम एक गैर-शून्य माइनर है, अर्थात | 3|, | 2|, | 6| और | 4| ये सभी क्रम ' 1 ' के गैर-शून्य माइनर हैं।

Combract Course Matrix of and on 121

Rank of Square Matrix of order ' 3 '

Rank of a non-zero square matrix A of order ' 3 ' is either 3,2 or 1.

क्रम ' 3 ' के शून्येतर वर्ग मैट्रिक्स A की रैंक या तो 3,2 या 1 होती है।

Case -1 Rank of matrix A = 3 only when $|A| \neq 0$

केस -1 मैट्रिक्स A की रैंक केवल तभी 3 = जब |A| ≠0 हो

- Case -2 Rank of matrix A = 2 only when |A| = 0 and there exists atleast one non-zero minor of order ' 2 '.
 - केस -2 मैट्रिक्स A की रैंक केवल तभी 2 = जब |A|=0 हो और क्रम ' 2 ' का कम से कम एक शून्येतर माइनर मौजूद हो।
- Case -3 Rank of Matrix A = 1 only when |A| = 0 and every minor of order ' 2 ' is zero.
 - केस 3 मैट्रिक्स A की रैंक केवल तभी 1 होती है जब |A|=0 हो और ' 2 ' कोटि का प्रत्येक माइनर शून्य हो।

Example-1

Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 4 \\ 5 & 2 & 0 \end{bmatrix}$$
 be a square matrix of order ' 3 ' मान लीजिए $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 4 \\ 5 & 2 & 0 \end{bmatrix}$ क्रम '3' का एक वर्ग मैट्रिक्स है Here $|A| = \begin{vmatrix} 1 & 2 & 3 \\ 0 & -1 & 4 \\ 5 & 2 & 0 \end{vmatrix}$ $= 1(0-8) - 2(0-20) + 3(0+5)$ $= -8 + 40 + 15$ $= 47$

Hence Rank of Matrix A=3

Example-2

Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 be a square matrix of order '3'

HIF \overrightarrow{e} $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ \overrightarrow{p} \overrightarrow{H} '3' \overrightarrow{p} \overrightarrow{U} \overrightarrow{p} \overrightarrow{q} \overrightarrow{q}

Note:- Similarly Rank of square matrix of order ≥ 4 can be obtained by the same method.

नोट:- इसी तरह क्रम ≥4 के वर्ग मैट्रिक्स की रैंक उसी विधि से प्राप्त की जा सकती है।

Rank of Rectangular matrix

Rank of Row Matrix

Rank of Row matrix is always '1'

पंक्ति मैट्रिक्स की रैंक हमेशा ' 1 ' होती है

For Example:-

Let $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ be a Row matrix of order 1×3

मान लें कि $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ क्रम 1×3 का एक रो मैट्रिक्स है

Rank of Column Matrix

Rank of Column Matrix is always '1' कॉलम मैट्रिक्स की रैंक हमेशा '1' होती है

```
A= [3] 3X1
```

For Example:-

Let
$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 is a column matrix of order 3×1

मान लीजिए
$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 3×1 क्रम का एक स्तंभ मैट्रिक्स है

Here |1|, |2| and |3| are three minors each of order '1'.

यहाँ |1|,|2| और |3| तीन माइनर हैं जिनमें से प्रत्येक का क्रम '1' है।

Hence Rank of Matrix
$$A = 1$$

अतः मैट्रिक्स A की रैंक = 1

Rank of Rectangular Matrix of order m x n

Rank of rectangular matrix of order $\underline{m \times n}$ is always less than or equal to $\min(m, n)$.

क्रम m×n के आयताकार मैट्रिक्स की रैंक हमेशा min(m,n) से कम या बराबर होती है।

i.e Rank of matrix $A \leq \min(m, n)$

यानी मैट्रिक्स A≤min(m,n) की रैंक

Working Rule:-

- 1 Suppose $\min(m, n) = p$ and if we get atleast one non-zero minor of order ' p ' then Rank of A = p
- मान लीजिए min(m,n)=p है और यदि हमें कम से कम एक गैर-शून्य माइनर मिलता है जिसका क्रम 'p' है तो A की रैंक = p

3 Continue like this we shall get atleast one minor of order 'r' which is non-zero and all minors of order r+1 are zero. Thus Rank of matrix A=r इसी तरह आगे बढ़ते हुए हमें क्रम 'r' का कम से कम एक माइनर मिलेगा जो गैर-शून्य है और क्रम r+1 के सभी माइनर शून्य हैं। इस प्रकार मैट्रिक्स A की रैंक = r

For Example:-

Let
$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 1 & 2 & 1 & 3 \\ 2 & 4 & 2 & 6 \end{bmatrix}$$
 be a matrix of order 3×4 . So it cannot have minors of order 4 .

मान लें कि $A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 1 & 2 & 1 & 3 \\ 2 & 4 & 2 & 6 \end{bmatrix}$ क्रम 3×4 का एक आव्यूह है। अतः इसमें क्रम 4 के लघु नहीं हो सकते।

Here we will get four minors of order '3' and which are | 1 2 0 | 1 2 1 | 1 0 1 | 1 3 and | 2 4 2 | 2 4 6 | 2 2 6

determinant is zero.

All minors of order ' 3 ' are zero and so Rank of A < 3 '3' क्रम के सभी माइनर शून्य हैं और इसलिए A की रैंक < 3 है

Now consider a minor of order '2'

अब '2' क्रम के माइनर पर विचार करें

 $\begin{vmatrix} 0 & 1 \\ 1 & 3 \end{vmatrix} = \boxed{-1 \neq 0}$. As at least one minor of order '2' is non-zero and all minors or order '3' are zero

 $\begin{vmatrix} 0 & 1 \\ 1 & 3 \end{vmatrix} = -1 \neq 0$. चूंकि '2' क्रम का कम से कम एक माइनर शून्य नहीं है और सभी माइनर या क्रम '3' शून्य हैं Hence Rank of matrix A=2

इसलिए मैट्रिक्स A की रैंक = 2