

COMPLEX ANALYSIS

PART-12

Entire Function: A function f(z) is analytic in $\mathbb C$ is known as an/entire function

Theorem -1 If f(z)&(z) are entire function then f(z) must be Constant Function& in this case $f'(z) = 0, \forall z \in \mathbb{C}$

Q. If p(z) & g(z) are non-zero polynomial s.t. p(z) g(z) is analytic in \mathbb{C} , then which of the following is/are true?

- (a) P(z) is constant polynomial
- (b) $\overline{p(z)}$ is constant polynomial
- (c) g(z) is constant polynomial
- (d) $\overline{g(z)}$ is constant polynomial
- (e) (c)&(d) Both true

Complex Analysis

Theorem -2 If f(z) = u + iv is analytic in \mathbb{C} & if Re (f(z)) is Constant, then f(z) is constant function.

Theorem -3 If f(z) = u + iv is analytic inc & if Im(f(x)) is Constant, then f(z)isconstant function. Q. Consider set $S = \{f \mid f(z) = 30 + \text{ iv } \& f(z) \text{ is regular in } \mathbb{C}\&f:\mathbb{C} \to \mathbb{G}, \text{ then } \}$

(a) If f(5+7i) = 30+i93, then number

of such function is unique

(b) S is singleton set

S is uncountable set

(d) (a) & (c) both true

$$R + 30 + 14$$
 $(2) = 30 + 14$
 $30 + 51$
 $30 + 51$

Theorem -4 If f(z) = u + iv is analytic in \mathbb{C} & if $|f(z)| = \sqrt{u^2 + v^2} = c$ (constant) then f(z) is constant function.

Q. If $f: R^2 \to \{(x, y) \mid x^2 + y^2 = 100\}$ is differentiable everywhere & f(15,25) = (10,0) then f(10,0) =

Theorem -5 If f(z) = u + iv is analytic in $\subseteq \&$ if famp $f(z) = \tan^{-1}\left(\frac{v}{u}\right) = c$ then f(z) is constant function.

Theorem - 6 If f(z) = u + iv is analytic in \mathbb{C} & if a, b, c are non-zero real constant s.t. au + bv = c, then f(z) must be constant function.

Theorem -7 If f(z) = u + iv is analytic in $\mathbb{C}\& \text{Re } (f(z)) = u(x,y) \geq 0; \forall z \in \mathbb{C}$ then f(z) must be constant function

Theorem -8 If f(z) = u + iv is analytic in $\mathbb{C} \text{\&Im } (f(z)) = v(x,y) \ge 0; \forall z \in \mathbb{C}$ then f(z) must be constant function

Theorem -9 If f(z) = u + iv is analytic in $\mathbb{C}\&\text{Re }(f(z)) = u(x,y) \leq 0; \forall z \in \mathbb{C}.$ then f(z) must be constant function.

Theorem -10 If f(z) = u + iv is analytic in $\mathbb{C}\& \text{Im } (f(z)) = v(x,y) \le 0; \forall z \in \mathbb{C}.$ then f(z) must be constant function.

$$\frac{x^{2}}{x^{2}}(4)x+(4+9)=0$$

$$\frac{x^{2}}{x^{2}}(4)x+(4+9)=0$$

22-4x+13=0

Complex Analysis

Q. If one root of any equation is (2-3i) (where $i=\sqrt{-1}$), then what is the equation? $\ll = (2-3i)$

(a)
$$x^2 - 4x + 12 = 0$$

(a)
$$x^2 - 4x + 13 = 0$$

(c)
$$x^2 + 4x + 12 = 0$$

(d)
$$x^2 + 4x - 13 = 0$$

Q. Roots of the quadratic equation x^2 —

$$2ix + 3 = 0$$
 are:

$$b = -i$$
 (a) $3i, -i$ (b) $3i, i$

$$\alpha + \beta = 3i - i$$
 (c) $-3i, -i$

=2
$$(d) \pm 3i$$

x = 3 ¿

$$x^2 - 2ix + 3 = 0$$

Q. Find the argument of this complex number $(1+i)(\sqrt{3}+i)$:

$$0 = \frac{1}{3} + \frac{1}{\sqrt{3} - 1} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$(1+i)(13+i)$$

$$(3+i)(1+3)-1$$

$$(3-i)+i(1+3)$$

$$(3-i)+i(3+1)$$

$$(3+i)+i(3+1)$$

$$t_{an15} = \sqrt{3-1}$$

$$\omega^{3}=1$$
 $1+\omega^{2}=0$
 $1=-3$
 $1=-3$

Q. If ω be a cube root of 1, then what is

the value of $(1-\omega)(1-\omega^2)(1-\omega^4)(1-\omega^4)$

$$\omega^5$$
)?

$$(1-\omega)(1-\omega^2)(1-\omega)(1-\omega^2)$$

$$\left[(1-\omega^{2})^{2} (1-\omega^{2})^{2} \right]^{2}$$

$$\left[(1-\omega^{2})^{2} (1-\omega^{2})^{2} \right]^{2}$$

$$\left[(1+1+1)^{2} \right]^{2}$$

Q. If
$$f(z) = |z|^2$$
, then

$$f(z) = |x+iy|$$

$$(\int x^2 + y^2)^2$$

$$(f(z)) = |z|^2, \text{ then}$$

(L)
$$f$$
 is differentiable everywhere (L) f is differentiable nowhere (L) f is differentiable only at zero

$$u_{x} = 2x = 0$$
 $v_{y} = 2y = 0$
 $v_{y} = 2y = 0$

$$f(z) = |z|$$

 $f(z) = x^2 + y^2 + 0i$

Q. If
$$f(z) = |z|^2$$
, then:

- f(z) = |z|Q. If $f(z) = |z|^2$, then: $f(z) = x^2 + y^2 + 0$ (a) f is continuous but not differentiable at 0
 - (b) f is continuous and differentiable at 0
 - (c) f is neither continuous nor differentiable at 0
 - (d) f is discontinuous at 1