

DSS 3 (G PART(B)

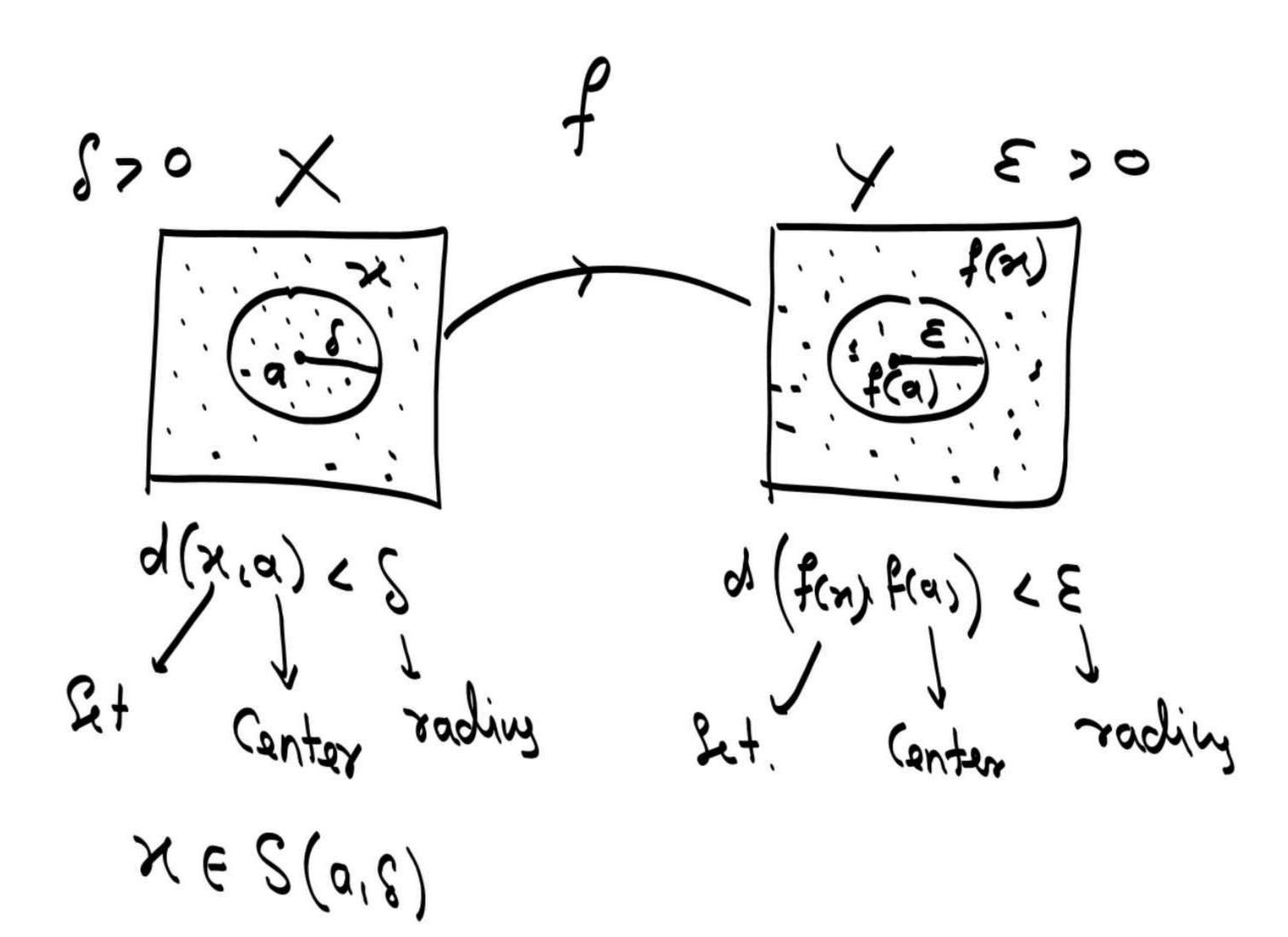
METRIX

(BASIC CONCEPTS OF METRIX) PART-08

09/2024 08:00 AM

Continuous Function

Let (X,d) and (Y,d^*) be two metric spaces and let $f:X\to Y$ be a function, then f is said to be continuous at a point $a \in X$, if for every $\varepsilon > 0$, there exists $\delta > 0$ such that $d(x,a) < \delta \Rightarrow$ $d^*(f(x), f(a)) < \varepsilon$, where $x \in X$ and $f(x) \in Y$. मान लें कि (X,d) और (Y,d^*) दो मैट्रिक स्पेस हैं और $f:X \rightarrow Y$ एक फ़ंक्शन है, तो f को एक बिंदु $a \in X$ पर निरंतर कहा जाता है, यदि प्रत्येक $\epsilon > 0$ के लिए, $\delta > 0$ मौजूद है जैसे कि $d(x,a) < \delta \Rightarrow d^*(f(x),f(a)) < \varepsilon$, जहाँ x∈X और f(x)∈Y.



Uniform Continuity

Let (X, d) and (Y, d^*) be two metric spaces and let $f: X \to Y$ be a function, then f is said to be uniform continuous on X, if given $\varepsilon > 0$, there exists $\delta > 0$ such that $d(x_1, x_2) < \delta \Rightarrow$ $d^*(f(x_1), f(x_2)) < \varepsilon$ for all $x_1, x_2 \in X$. मान लें कि (X,d) और (Y, d^*) दो मैट्रिक स्पेस हैं और $f:X \rightarrow Y$ एक फ़ंक्शन है, तो f को X पर एकसमान निरंतर कहा जाता है, यदि E>0 दिया गया है, तो $\delta > 0$ मौजूद है जैसे कि $d(x_1, x_2) < \delta \Rightarrow d^*(f(x_1), f(x_2)) < \varepsilon$ सभी $x_1, x_2 \in X$ के लिए।

$$\begin{array}{c|c}
 & \times & f \\
\hline
 & \times & \\
 & \times &$$

H Note:-

Every uniformly continuous function on X is also continuous on X but a continuous function need not be uniformly continuous. X पर प्रत्येक समान रूप से सतत फलन X पर भी सतत होता है, लेकिन एक सतत फलन का समान रूप से सतत होना आवश्यक नहीं है।

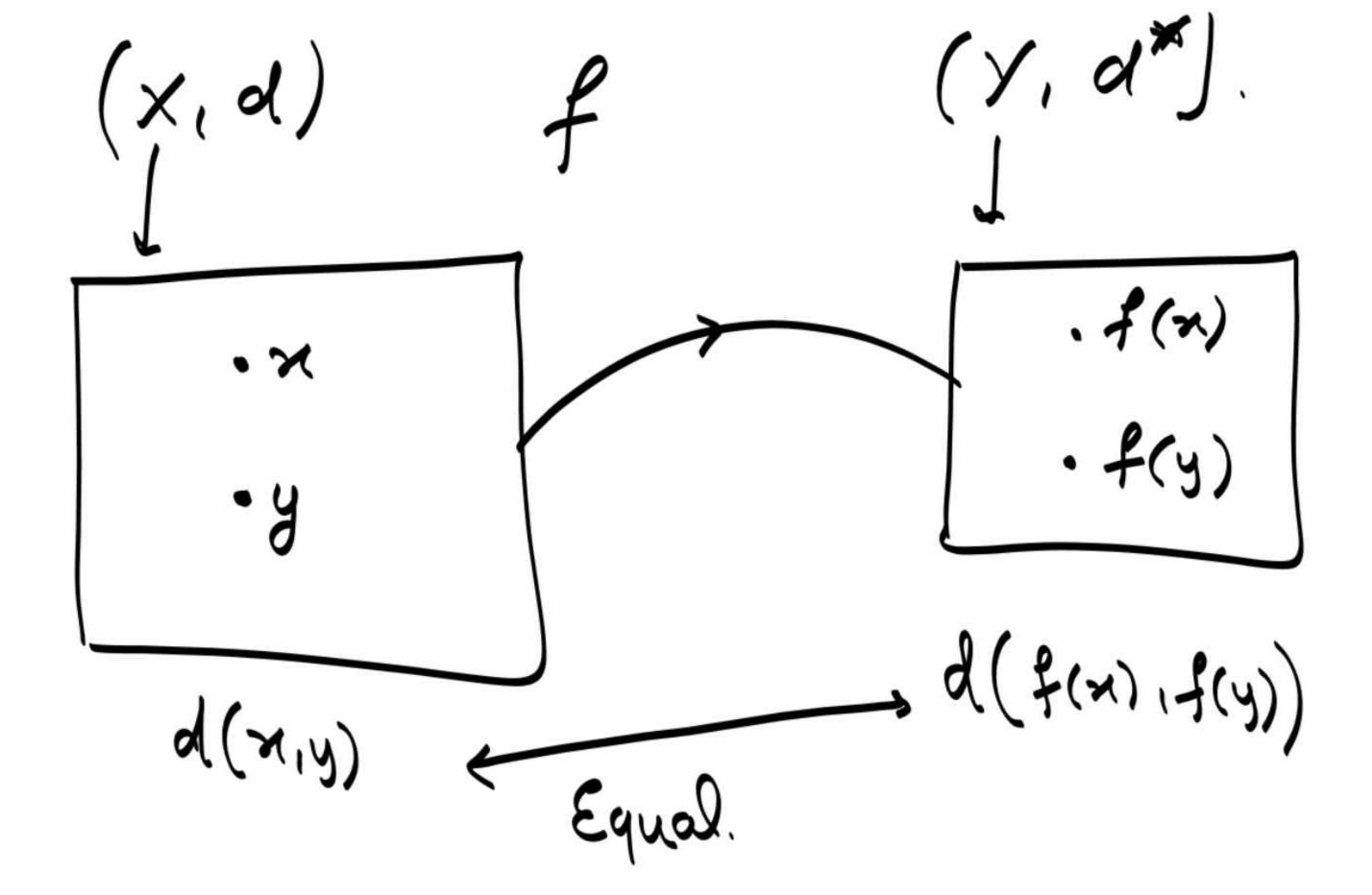
one-me/and funh ja isometric spacess.

Isometric Spaces

Let (X,d) and (Y,d^*) be two metric spaces. Then a one one function $f:(X,d)\to (Y,d^*)$ is called an isometry if $d(x,y)=d^*(f(x),f(y))$ for all $x,y\in X$.

मान लीजिए (X,d) और (Y,d^*) दो मीट्रिक स्पेस हैं। फिर एक एक फ़ंक्शन $f:(X,d)\to (Y,d^*)$ को आइसोमेट्री कहा जाता है यदि $d(x,y)=d^*(f(x),f(y))$ सभी $x,y\in X$ के लिए।

And the metric spaces are called isometric spaces. और मीट्रिक स्पेस को आइसोमेट्रिक स्पेस कहा जाता है।



Covers A S

Let A be a subset of a metric space (X,d). Then a collection $\{G_{\lambda} \colon \lambda \in \Lambda\}$ of a subsets of X is said to be cover of A if $A \subseteq U_{\lambda \in \Lambda}G_{\lambda}$. Hir elliptically a control of the cover of A if $A \subseteq U_{\lambda \in \Lambda}G_{\lambda}$. Hir elliptically a control of the cover of A if $A \subseteq U_{\lambda \in \Lambda}G_{\lambda}$. A provided by the cover of A if $A \subseteq U_{\lambda \in \Lambda}G_{\lambda}$.



6, V 62 V 63 V 64 V - ---

A = G, U G2 U G2 U G4 U - ---

Note:-

If each member of a cover is open, then it is said to be an open cover.

यदि किसी आवरण का प्रत्येक सदस्य खुला हो, तो उसे खुला आवरण कहा जाता है।

Subcover

If the collection $C = \{G_{\lambda} : \lambda \in \Lambda\}$ is a cover of set A in a metric space (X,d), then a subcollection $C^* = \{G_{\lambda} : \lambda \in \Lambda', \Lambda' \subseteq \Lambda\}$ is said to be a subcover of C if C^* itself covers A. i.e $A \subseteq \bigcup_{\lambda \in \Lambda'} G_{\lambda}$. यदि संग्रह $C = \{G_{\lambda} : \lambda \in \Lambda', \Lambda' \subseteq \Lambda\}$ मीट्रिक स्पेस (X,d) में सेट A का कवर है, तो उपसंग्रह $C^* = \{G_{\lambda} : \lambda \in \Lambda', \Lambda' \subseteq \Lambda\}$ को C का उपकवर कहा जाता है यदि C^* स्वयं A को कवर करता है। यानी $A \subseteq \bigcup_{\lambda \in \Lambda'} G_{\lambda}$ ।

Note:-

A subcover C^* of a cover is said to be a finite subcover if C^* has finite number of members.

किसी आवरण के उपआवरण c^* को परिमित उपआवरण कहा जाता है यदि c^* में सदस्यों की संख्या परिमित हो।

Compact Set and Compact Metric Space

A subset A of a metric space (X, d) is said to be compact if every open cover of A has finite subcover.

मैट्रिक स्पेस (X,d) के उपसमुच्चय A को संहत कहा जाता है यदि A के प्रत्येक खुले आवरण का परिमित उपआवरण हो।

In particular,

The space X is said to be compact if for every collection $\{G_{\lambda}\}_{\lambda \in \Lambda}$ of open sets for which $X = U_{\lambda \in \Lambda}\{G_{\lambda}\}$, there exist finitely many sets $G_{\lambda_1}, G_{\lambda_2}, \ldots, G_{\lambda_n}$ among the G_{λ} 's such that $X = \bigcup_{i=1}^n G_{\lambda_i}$. स्पेस X को कॉम्पैक्ट कहा जाता है यदि खुले सेटों के प्रत्येक संग्रह $\{G_{\lambda}\}_{\lambda \in \Lambda}$ के लिए जिसके लिए $X = U_{\lambda \in \Lambda}\{G_{\lambda}\}$, के बीच परिमित रूप से कई सेट $G_{\lambda_1}, G_{\lambda_2}, \ldots, G_{\lambda_n}$ मौजूद हैं जैसे कि $X = \bigcup_{i=1}^n G_{\lambda_i}$ I

This property is known as Heine-Borel Property. इस संपत्ति को हेन-बोरेल संबद्धि के नाम से जाना जाता है। A=1 (-50,50)/(-11,11)

Examples:-

1. Set A = [-1,1] is a compact subset of R.

सेट A=[-1,1] R का एक कॉम्पैक्ट उपसमुच्चय है।

2. The usual metric space (R, d) is not compact. सामान्य मीट्रिक स्पेस (R, d) कॉम्पैक्ट नहीं है।

Some Important Results

1. If f and g are continuous real valued functions defined on a metric space (X,d), then f+g and αf are also continuous, where α is any real number.

यदि f और g एक मीट्रिक स्पेस (X,d) पर परिभाषित निरंतर वास्तविक मान वाले फ़ंक्शन हैं, तो f+g और αf भी निरंतर हैं, जहाँ α कोई भी वास्तविक संख्या है। 2. Let (X,d) and (Y,d^*) be two metric spaces and let f,g be two continuous functions of X into Y. Then the set $\{x \in X: f(x) = g(x)\}$ is a closed subset of X मान लें कि (X,d) और (Y,d^*) दो मीट्रिक स्पेस हैं और f,g X के Y में दो निरंतर फ़ंक्शन हैं। तब सेट $\{x \in X: f(x) = g(x)\}$ X का एक बंद उपसमूह है

Sequence d'ally continous.

3. Let (X, d) and (Y, d^*) be two metric spaces and f be a function of X into Y. Then f is continuous at $a \in X$ iff to every sequence $\langle a_n \rangle$ in X converges to a and the sequence $\langle f(a_n) \rangle$ in Y

converges to f(a)

मान लें कि (X,d) और (Y, d^*) दो मीट्रिक स्पेस हैं और f X का Y में एक फ़ंक्शन है। तब f $a \in X$ पर निरंतर है यदि और केवल यदि X में प्रत्येक अनुक्रम $< a_n > a$ में अभिसरित होता है और Y में अनुक्रम $< f(a_n) > f(a)$ में अभिसरित होता है

4. An isometry is a uniformly continuous function. एक सममिति एक समान रूप से निरंतर फ़ंक्शन है।

- 5. Every closed subset of a compact metric space is compact. एक कॉम्पैक्ट मीट्रिक स्पेस का प्रत्येक बंद उपसमूह कॉम्पैक्ट होता है।
- ्र 6. Compact metric space is both complete and totally bounded. कॉम्पैक्ट मीट्रिक स्पेस पूर्ण और पूरी तरह से बंधित दोनों है।
- ्रि. If d_1 and d_2 be two metric spaces on the same set X, then d_1 open and d_2 open sets coincide यदि d_1 और d_2 एक ही सेट X पर दो मीट्रिक स्पेस हैं, तो d_1 ओपन और d_2 ओपन सेट संपाती होंगे

8. If d_1 and d_2 be two metric spaces on the same set X, then for every metric space (Y, d), every $g: Y \to X$ is d_1 continuous iff it is d_2 continuous.

यदि d_1 और d_2 एक ही सेट X पर दो मीट्रिक स्पेस हैं, तो प्रत्येक मीट्रिक स्पेस (Y,d) के लिए, प्रत्येक $g:Y \rightarrow X$ d_1 सतत है यदि और केवल यदि यह d_2 सतत है।

9. If d_1 and d_2 be two metric spaces on the same set X, then for every metric space (Y,d), every $f:X\to Y$ is d_1 continuous iff it is d_2 continuous.

यदि d_1 और d_2 एक ही सेट X पर दो मीट्रिक स्पेस हैं, तो प्रत्येक मीट्रिक स्पेस (Y,d) के लिए, प्रत्येक f:X \rightarrow Y d_1 सतत है यदि और केवल यदि यह d_2 सतत है।