

DSSBBCBART(B)

METRIX

(BASIC CONCEPTS OF METRIX) PART-06

Cantor Intersection Theorem :- Let (X, d) be a metric space. Then (X, d) is complete if and only if, for every nested sequence $\{F_n\}_{n\geq 1}$ of non-empty closed subsets of X, s. t. $d(F_n)\to 0$ as $n\to \infty$ ∞ , then intersection $\bigcap_{n=1}^{\infty} F_n$ contains one and only one point. मान लीजिए (X,d) एक मीट्रिक स्पेस है। तब (X,d) तभी पूर्ण होता है जब और केवल तभी, जब x के गैर-खाली बंद उपसमूहों के प्रत्येक नेस्टेड अनुक्रम $\{F_n\}_{n\geq 1}$ के लिए, $s.t.d(F_n)\to 0$ के रूप में $n\to\infty$, तब प्रतिच्छेद $\bigcap_{n=1}^{\infty} F_n$ में एक और केवल एक बिंद्र होता है।

OR

If $\{F_n\}$ be a decreasing Sequence of non-empty closed Subsets of a Complete metric Space (X,d) s.t. $\delta(F_n) \to 0$ as $n \to \infty$ then $\bigcap_{n=1}^{\infty} \overline{F_n} \neq \phi$ and contains exactly one point.

यदि $\{F_n\}$ एक पूर्ण मैट्रिक स्पेस (X,d) के गैर-रिक्त बंद उपसमुच्चयों का घटता हुआ अनुक्रम हो, जब तक कि $\mathbf{n} \to \infty$ पर $\delta(F_n) \to 0$ हो, तो $\bigcap_{n=1}^{\infty} \overline{F_n} \neq \phi$ हो और इसमें ठीक एक बिंदु हो।

Closed
Subset.
Intersection of the late of the factor of the subset.

Supermu [d(x14)] -> 0

Supermu [d(x14)] -> 0

Supermu [d(x14)] -> 0

Q. In the Cantor Intersection Theorem, what is the requirement for the sequence $\{F_n\}$ of nonempty closed subsets of a complete metric space (X, d)?

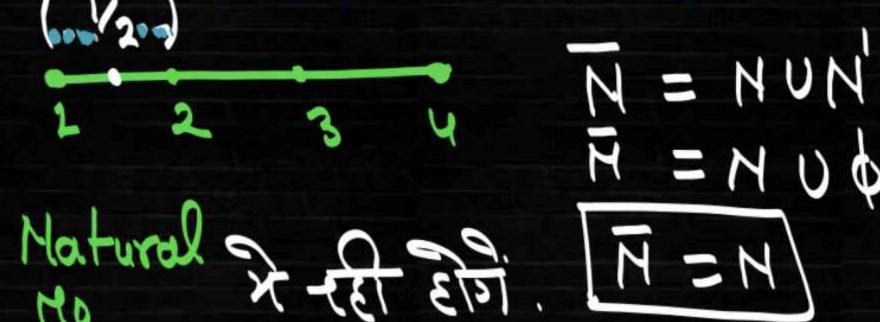
कैंटर इंटरसेक्शन प्रमेय में, एक पूर्ण मैट्रिक स्पेस (\mathbf{X} , \mathbf{d}) के रिक्त बंद उपसमुच्चयों के अनुक्रम $\{F_n\}$ के लिए क्या आवश्यकता है?

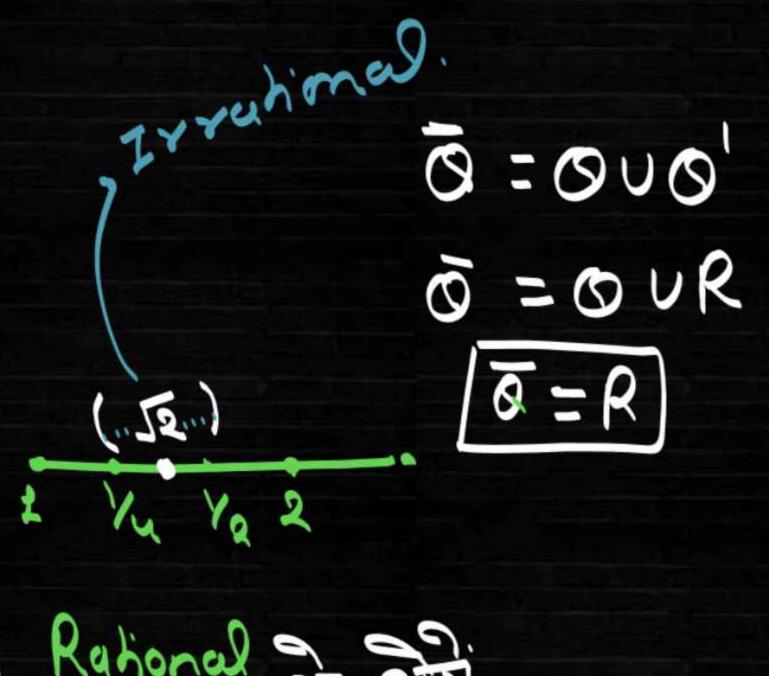
- A) $\{F_n\}$ must be an increasing sequence.
- F_n must be a decreasing sequence such that $\delta(F_n) \to 0$ as $n \to \infty$.
 - (C) $\{F_n\}$ must be a sequence of open subsets.
 - (D) $\{F_n\}$ must be a sequence of compact subsets.

Dense Set:-

 $A \subseteq (X, d)$ is said to be dense if $\bar{A} = X$

 $A \subseteq (X,d)$ को सघन कहा जाता है यदि $\bar{A} = X$





Nowhere Dense Set:- $A \subseteq (X, d)$ is Nowhere dense iff $(\bar{A})^0 = \phi$ अनेक सघन समुच्चय:- A⊆(X,d) अनेक सघन है यदि और केवल यदि $(\bar{A})^0 = \phi$

First Category Space |Subset { Meager Set } प्रथम श्रेणी स्थान | उपसमुच्चय {अल्प समुच्चय} A subset A of a metric space (X, d) is 1st Category if मीट्रिक स्पेस (X,d) का उपसमुच्चय A 1st श्रेणी है यदि It is union of countable family of nowhere dense sets. यह कहीं भी सघन समुच्चयों के गणनीय परिवार का संघ है।

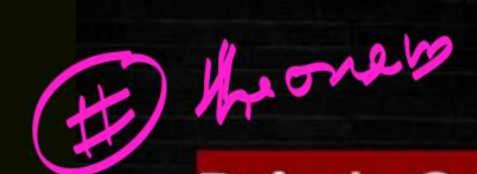
2nd (Second Category Subset) | Non-Meager set 2nd (द्वितीय श्रेणी उपसमूह) | गैर-अल्प सेट

A Subset which is not of 1st Category is called 2nd Category Subset एक उपसमूह जो 1st श्रेणी का नहीं है उसे 2nd श्रेणी उपसमूह कहा जाता है

OR

No non-empty open subset of a complete metric space is of the first category (i.e., cannot be written as a countable union of nowhere dense sets).

पूर्ण मीट्रिक स्पेस का कोई भी गैर-खाली खुला उपसमूह प्रथम श्रेणी का नहीं होता है (अर्थात, इसे कहीं भी सघन सेटों के गणनीय संघ के रूप में नहीं लिखा जा सकता



Baire's Category Theorem

Every Complete Metric Space is of the 2nd Category (category II) as a subset itself.

(adagory 1)

Category (2)

प्रत्येक पूर्ण मीट्रिक स्पेस 2nd श्रेणी (श्रेणी II) का उपसमूह होता है। OR

If $\{A_n\}$ is a seq. of nowhere dense sets in a Complete Metric (X, d)

यदि $\{A_n\}$ पूर्ण मीट्रिक (X, d) में कहीं भी सघन सेटों का अनुक्रम है

- $\Rightarrow \exists x \in X$ which is not in any of A_n
- $\Rightarrow \exists x \in X$ जो A_n में से किसी में नहीं है

- Q. Which statement states that "Every complete metric space is of second category"? कौन सा कथन कहता है कि "प्रत्येक पूर्ण मीट्रिक स्पेस द्वितीय श्रेणी का है"?
- A. Cantor Theorem
- **B.** Baire sandwich theorem
- C. Fundamental theorem
- **Baire category theorem**

Note:

- 7. The irrationals in R are of category II R में अपरिमेय संख्याएँ श्रेणी ॥ की हैं
- 2. A nonempty open interval is of category II एक रिक्त खुला अंतराल श्रेणी ॥ का है
- 3. A subset of a nowhere dense set is nowhere dense and, therefore, a subset of a set category I is again of category I कहीं भी सघन नहीं होने वाले समुच्चय का उपसमुच्चय कहीं भी सघन नहीं होता है, और इसलिए, श्रेणी। के समुच्चय का उपसमुच्चय पुनः श्रेणी। का होता है
 - 4. Every subset must be either of category I or of category II प्रत्येक उपसमुच्चय या तो श्रेणी। या श्रेणी॥ का होना चाहिए

Q. In any metric space (X, d), if A be any subset, then $A \subset X$ is closed if and only if

किसी भी मीट्रिक स्पेस (X,d) में, यदि A कोई उपसमुच्चय है, तो A⊂X बंद

्रिक्रे है यदि और केवल यदि

$$2. A = \bar{A}$$

- 1. Only 1 and 3
- 3. Only 3

- 2. Only 1
- 4. Only 2

- Q. Let X be a complete metric space then no non-empty open sub-set of X is of first category. Which theorem states this? मान लीजिए X एक पूर्ण मीट्रिक स्पेस है, तो X का कोई भी खाली खुला उपसमुच्चय प्रथम श्रेणी का नहीं है। कौन सा प्रमेय यह बताता है?
- 1. Bolzano- Weierstrass Theorem
- 7. The Baire category Theorem
 - 3. Cauchy's Theorem
 - 4. Intermediate Value Theorem

Q. Let (X, d) be a metric space and E is contained in X, E is called nowhere dense set if मान लें कि (X,d) एक मीट्रिक स्पेस है और E, X में समाहित है, E को कहीं

(E)°= 6

भी सघन सेट नहीं कहा जाता है यदि

A. closure of E is not defined

B. closure of E is empty

C. closure of E is finite

D. closure of E terminate after some steps

Q. In a metric space (X, d), A be a metric space, then the largest open subset of A^{C} (complement of A) is मीट्रिक स्पेस (X,d) में, A एक मीट्रिक स्पेस है, तो A^{C} (A का पूरक) का सबसे बड़ा खुला उपसमुच्चय है

A. Closure of A

B. Exterior of A

C. Boundary of A

D. Interior of A

