

## DSSBBC PART(A+B)



REAL ANALYSIS (SET RALATION & FUNCTION)

Part -3

#### 1. Set

A well-defined list or collection of things is called a Set.

Sets are generally expressed by capital letters of English alphabet A, B, C, ... etc. and their elements are expressed by small letters a, b, c, d, x, y etc.

If a is an element of a set A and b is not an element of a set B. then symbolically we write it as  $a \in A$ ,  $b \notin B$ .

#### 2. Representation of a Set

Roster Form: In this form a set is represented by listing all or some of its elements. The clements are separated by commas and enclosed in curly brackets {}

Set Builder Form: In this form we use a letter x to represent an arbitrary element, write specific properties say P(x), satisfied by elements of the set and the set is represented as

$$\{x \mid P(x)\}\ \text{or}\ \{x : P(x)\}\$$

Set of natural numbers

Set of whole numbers

Set of integers

Set of rational numbers

Set of irrational numbers

Set of real numbers

**Set of Complex numbers** 

#### 3. Void Set or Null Set

If a set has no element, then it is called a void or null set and it is expressed as  $\phi$  or  $\{\}$ 

#### Finite and Infinite Sets

A set whith is cither empty or has a tinite number of difigent elements is called a finite set and aset which is not finte is called an in finite set.

In a linite set A, the number ol its different elements is called its order and it is expressed as

$$n(A)$$
 or  $o(A)$ 

#### Notes:

- (i) For every set A,  $n(\Lambda) \ge 0$  and  $n(A) \in W$ .
- (ii) If n(A) = 1, then A is called singleton set.

Example.  $A = |x|x \in Z, |x| \le 2$ 

#### **Equal and Equivalent Sets**

Two sets A and B are said to be equal sets if every element of A is in B and every element of B is in A

$$A = B \Leftrightarrow x \in A \Rightarrow x \in B \land x \in B \Rightarrow x \in A$$

Two finite sets A and B are said to be equivalent sets.

 $(A \sim B)$  if they have equal number of elements

$$A \sim B \Leftrightarrow n(A) = n(B)$$

#### Subset

If every elemen of aset A is in B, then A is acalida subset of B which is erpresed as

 $1.A \subset B$ 

Hence

$$A \subset B \Leftrightarrow x \in A \Rightarrow x \in B$$

If it is a subset of B, the B s said to be smper set of A Funther if  $A \subset B$  but  $A \neq B$  then it is called a proper substi of B.

### Property of Subset

For ainy sets A, B, C

(i) 
$$A \subset A$$

(ii) 
$$\phi \subset A$$

(iii) 
$$A = B \Leftrightarrow A \in B \land B \subset A$$

(iv) 
$$A \subset B \land B \subset C \Rightarrow A \subset C$$

#### Intervals as Infinite Subsets of R

(i) Closed Interval:

$$[a, b] = \{x \mid x \in \mathbb{R}, a \le x \le b\}$$

(ii) Open Interval:

$$(a, b)$$
 or  $]a, b[= \{x \mid x \in \mathbb{R}, a < x < b\}]$ 

(iii) Semi-open (closed) Interval:

$$(a,b] = \{x \mid x \in \mathbb{R}, a < x \le b\}$$
  
 $[a,b) = \{x \mid x \in \mathbb{R}, a \le x < b\}$ 

Interval  $(-\infty, \infty)$  represents the set of real numbers R or real line.

• The number (b-a) is called the length of any of the abowe intertals.

#### **SETS & RELATIONS**

#### **Power Set**

The set of all subsets of a set A is called the Power set of A and symbolically it is expressed as

Hence

$$P(A) \text{ or } 2^A$$
  
 $P(A) = \{X \mid X \subset A\}$ 

Further if A is a finte set of order n, then it can be easily seen that the number of all subsets of A is  $2^n$  and so  $n(P(A)) = 2^n$ .

#### Hence

$$n(A) = n$$
  $\Rightarrow$  Total number of subsets of  $A = 2^n$   
 $\Rightarrow n(P(A)) = 2^n, n(P(A)) \ge 1$ 

# Properties of Union and Intersection Opcrations

If A,B,C are any three sets, then

(i) 
$$A \cup A = A$$
  
 $A \cap A = A$  (Idempotent laws)

(ii) 
$$A \cup \phi = A$$
  
 $A \cap \phi = \phi$ 

(iii) 
$$A \cup U = U$$
 $A \cap U = A$ 

(iv) 
$$A \cup B = B \cup A$$
  $A \cap B = B \cap A$  (Commutativity)  
(v)  $(A \cup B) \cup C = A \cup (B \cup C)$  (Associativity)  
 $(A \cap B) \cap C = A \cap (B \cap C)$   
(vi)  $A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \& A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$   
(vii)  $A \cap C \cap C \cap C \cap C \cap C \cap C$   
(vii)  $A \cap C \cap C$ 

### Complement of a Set

Let A be a subset of a universal set U, then the set U-A is called the complement set of Aand it is denoted by A' or  $A^{C}$ .

Thus



$$A' = \{x \mid x \in U, x \notin A\}$$

$$A \Rightarrow U - A$$

### Properties of Product of Sets

If A, B, C, D are any sets, then following properties can easily be established:

(i)  $\underline{n}(\underline{A \times B}) = n(A) \cdot n(B)$ , where A, B are finite sets.

(ii) 
$$A \times B = \phi \Leftrightarrow A = \phi \text{ or } B = \phi$$

(iii) 
$$A \times B \neq B \times A$$

(iv) 
$$A \times B = B \times A \Leftrightarrow A = B$$

(v) 
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

(vi) 
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
  
(vii)  $A \times (B - C) = (A \times B) - (A \times C)$   
(viii)  $A \subset B \Rightarrow A \times A = (A \times B) \cap (B \times A)$   
(ix)  $A \subset B, C \subset D \Rightarrow (A \times C) \subset (B \times D)$   
 $(x)(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$ 

### **Cartesian Product of Sets**

The cartesian product  $A \times B$  of two sets A, B is the set of all those ordered pairs in which first element belongs to A and second element belongs to B. Thus

In particular

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$
  
 $A^2 = A \times A = \{(a, b) \mid a, b \in A\}$ 

Q. If 
$$A = \{1, 3\}, B = \{0, 2, 4\}, \text{ then}$$

$$A \times B = \{(1, 0), (1, 2)\}$$

$$B \times A = A^{2} = A^{2} = A^{2}$$

## Some Properties of Difference and Complement Sets

12345 If A, B, C are any sets, then

$$B = \{3,7,8\}$$
 (i)  $A - A = \phi, A - \phi = A, \phi - A = \phi$ 

$$A - B = \{ \{ \{ \} \} \}$$

$$(iii) \underline{A - B} \subset A, \underline{B} - A \subset \underline{B} \}$$

$$(iii) (A - B) \cup B = A \cup B$$

(ii) 
$$A - B \subset A$$
,  $B - A \subset B$ 

(iii) 
$$(A - B) \cup B = A \cup B$$

B-A: 
$$\{67, 8\}$$
 (iv)  $(A - B) \cap B = \emptyset$ 

(v) 
$$A - B \neq B - A$$

$$(vi) (A - B) - C \neq A - (B - C)$$

$$A = \{1,2,3,4,5,6\} \quad (vii) (A - B) \cap (B - A) = \phi$$

$$B = \{2,4,6,7\} \quad (viii) \phi' = U, U' = \phi$$

$$A - B = \{1,3,5\} \quad (ix) (A')' = A \quad A = \{2,4,6\} \quad A \cup A' = U = A' \quad (xi) A \cap A' = \phi$$

$$(A - B) \cap (B - A) = \phi \quad (xii) A \subset B \Rightarrow B' \subset A' \quad A \cap A' = \{1,3,5\} \quad A \cap A' = \{1,3,5\} \quad A \cap A' = \{1,2,3,4,5\} \quad A$$

$$(xv)A - (B \cup C) = (A - B) \cap (A - C)$$
  
 $(xvi)A - (B \cap C) = (A - B) \cup (A - C)$   
 $(xvii) (A \cup B)' = A' \cap B'$   
 $(A \cap B)' = A' \cup B'$ 

## Properties of Difference Operation

**Symmetric** 

If A, B, C are any sets, then

(i) 
$$A \triangle A = \phi \checkmark$$

(ii) 
$$A\Delta\phi=A$$

(iii) 
$$A \triangle B = B \triangle A$$

(iv) 
$$A \triangle (B\Delta C) = (A \triangle B)\Delta C$$

(v) 
$$A \triangle B = A \triangle C \Rightarrow B = C$$

(vi) 
$$A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$$

ALB

Note: For any two sets A, B, sets (A - B), (B - A) and  $A \cap B$  are disjoint sets,



Relation  $\rightarrow$  Let A and B be two sets. Then a Relation R from set A to set B is a subset of  $A \times B$ . Then R is a relation from A to  $B \Rightarrow R \subseteq A \times B$ .



 $\Rightarrow$  If A and B are finite sets of Order m and n Respectively, then the number of subset of  $A \times B$  is  $2^{mn}$ ?

Hence

m = O(A) = 3

Total number of Relation defined from A to  $B = 2^{mn}$ . n = 0(8) = 3

No. of Reption + Sun = 3x3 = 29

# A={1,2,3,4,5,6,7,8}, 8={1,2,3,4}

Q=2b

R={
$$(3,1),(4,2),(6,3),(4,4)$$
}

Domain=(2,4,6,8)

Range > (1,2,3,4)

# 
$$A = \{1,2,3,\dots,+0\}$$
  $B = \{1,2,3,\dots,+0\}$   
 $X = \{1,2,3,\dots,+0\}$   $B = \{1,2,3,\dots,+0\}$   
 $X = \{1,2,3,\dots,+0\}$   $X = \{1,2,3,\dots,+0\}$   
 $X = \{1,1,1,\dots,+0\}$   $X = \{1,1,1,\dots,+0\}$   $X = \{1,1,1,1,\dots,+0\}$   $X = \{1,1,1,\dots,+0\}$   $X = \{1,1,\dots,+0\}$   $X = \{1,1,\dots,+0\}$ 

# 
$$A = \{2,4,6,8,10,...,100\}$$
,  $B = \{0,1,2,3,4...,100\}$   
 $2 = 4 \Rightarrow a = b \text{ where } a \in A$   
 $b \in B$   
 $R = \{(2,4),(4,6),(6,36), R = ?$   
 $(3,69),(10,100)\}$   
 $2 = 4 \Rightarrow a \in A$   
 $2 = 4 \Rightarrow b \in B$   
 $2 \Rightarrow b \in$ 

## Domain $\rightarrow$ The set of all first elements of ordered pair in relation R from a set A to set B

is called Domain of R.

93b first element

Range  $\rightarrow$  The set of all second element in  $\binom{1}{2}\binom{2}{3}\binom{3}{3}$  Relation R from set A to set B.

Rayles (Mg)  $\Rightarrow$  The whole set B is called co-domain of relation R.

⇒ Range ⊆ Co-Domain.

#### Trivial Relation on a Set

The following two relations are called trivial relations which are defined as follows:

#### (i) Void (or Empty) Relation:

A relation R defined on as set A is called its void or empty relation if  $R = \phi$ , i.e., if no element of A is related to any element of A.

#### (ii) Universal Relation:

A relation R defined on a set A is called its universal relation, if you  $R = A \times A$ , i.e., if every element of A is related to every element of A.

#### **Inverse Relation**

$$R^{-1} = \{(b, a) \mid (a, b) \in R\}$$

Obviously

(i) 
$$(\underline{a}, \underline{b}) \in R \Leftrightarrow (\underline{b}, \underline{a}) \in R^{-1}$$

(ii) domain of 
$$R^{-1}$$
 = range of  $R$ 

(iii) range of 
$$R^{-1} = \text{domain of } R$$

(iv) 
$$(R^{-1})^{-1} = R$$
  $R = (0,b)$   $(b,q)$