

Coset :- Let G be a group and H is Subgroup of G and a∈G. The set a.H = {a.h/∈H} is called Left coset of H in G.

ऐसे ही H.a = {h.a / h∈H} is Called Right Coset of H is G.

Q. If $G = \mathbb{Z}$, find all coset of H in G?

- A. 4 Distinct coset
- B. 3 Distinct coset
- C. Indentical coset
- D. None of these.

Properties on Corsets: Let H be a subgroup of G and a, b ∈ G.

Then,

- (i) a ∈ aH (i.e. coset of every subgroup always non-empty)
- (ii) aH = H iff a ∈H.
- (iii) aH = bH or aH \cap bH = \emptyset (null set) cosets are either identical or disjoint.
- (iv) aH = bH iff a $^{-1}$ be \in H or Ha Hb iff ab $^{-1}$ \in H.
- (v) |ah| = |bH|
- (vi) $aH = Ha iff H = aHa^{-1}$.
- (vii) aH (coset of G) is need not be subgroup of G.
- (viii) aH is a subgroup of G iff a ∈ H.
- (ix) H is subgroup of G, then, H itself is right as well as left coset of G by e (identity element) as He = eH = H.
- (x) If H is subgroup of G. Then, H H = H.

Note:

1.If G is abelian group. Then, every left coset of H in G is right coset of H in G.

2.If G is cyclic group. Then, every left coset of H in G is right coset of H in G.

Index of a Subgroup: The index of a subgroup H of a group G is defined as the number of distinct right (or left) coset of H in G.

3.If G be a Finite Group, Then i_G(H)

Q. If
$$G = Z_{20}$$
 and $H = <4>$ then $i_G(H)$?

- **A.** 1
- B. 2
- **C**. 3
- D. 4

Q. G = Q₄, H = $\{\pm 1, \pm i\}$, find all Distinct cosets of H in Q₄

- A. 3
- B. 2
- C. 0
- D. None of these

Q.
$$G = \mathbb{Z}$$
 and $H = 6\mathbb{Z}$ then $i_G(H) = ?$

- A. 4
- B. 6
- **C.** 1
- D. infinite

Q.
$$G = 2\mathbb{Z}$$
 and $H = 10\mathbb{Z}$ then $i_G(H) = ?$

- A. 0
- B. 2
- **C**. 5
- D. infinite

Q.
$$G = 3\mathbb{Z}$$
 and $H = 15\mathbb{Z}$ then $i_G(H) = ?$

- A. 0
- B. 2
- **C**. 5
- D. infinite

Q. Let H is subgroup of G and a ∈ H. then

A aH is subgroup of G.

B. aH is need not be subgroup of G.

C. aH is not subgroup of G.

D. None of these

Q. Let H is subgroup of G and a ∈ H. then,

A aH is subgroup of G.

B. aH is not subgroup of G.

C. aH is need not be subgroup of G.

D. None of these

Q. How many Distinct cosets of $H = \{I, (123), (132)\}$ in S_3 ?

- **A** 1
- **B**. 3
- **C**. 2
- D. Infinite

Q. Let G be an Abelian group of order 10. Let $S = \{g \in G : g^{-1} = g\}$. Then the number of non-indentity elements in S is

- A 5
- B. 2
- **C.** 1
- **D**. 0

Homomorphism: Let (G₁, ·) and (G₂, *) are two groups . A mapping $f: G_1 \to G_2$ is said to be homomorphism if $f(\mathbf{x} \cdot \mathbf{y}) = f(\mathbf{x}) * f(\mathbf{y}) \forall \mathbf{x}, \mathbf{y} \in G_1$ Q. If $f: \mathbb{Z}_{10} \to \mathbb{Z}_{10}: f(x) = 2x$ is homomorphism? 72,0=10,1,2,3,4,5,6,7,8,9

$$Z_{6}=\{0,1,2,3,4,5\}$$
 $Z_{4}=\{0,1,2,3,4,5\}$
 $Z_{4}=\{0,1,2,3,4,5\}$
 $Z_{4}=\{0,1,2,3,4,5\}$

Q. IF
$$f: \mathbb{Z}_6 \to \mathbb{Z}_4$$
: defined by $f(x) = 3x$ is homomorphism?

- A. Yes, homomorphism
- B. No, Not homomorphism
 - C. May be homomorphism
 - D. None of these

$$7 f: Z_{7} \rightarrow Z_{3} + f(x) = 2x,$$

$$Z_{3} \Rightarrow \{0,1,2\}$$

$$Z_{7} = \{0,1,2,3,4,5,6\}$$

$$O(2) \Rightarrow 3$$

$$O(0) = 1 \quad O(1) = 7$$

$$O(1) = 7 \quad O(5) = 7$$

$$O(3) = 7 \quad O(6) = 7$$

$$O(3) = 7 \quad O(6) = 7$$

$$O(3) = 7 \quad O(6) = 7$$

Q. IF $f: \mathbb{Z}_6 \to \mathbb{Z}_4$: defined by f(x) = 2x is homomorphism?

- A. Yes, homomorphism
- B. No, Not homomorphism
- C. May be homomorphism
- D. None of these

Q. IF $f: \mathbb{Z}_4 \to \mathbb{Z}_6: f(x) = 2x$ is homomorphism?

- A. Yes, homomorphism
- B. No, Not homomorphism
- C. May be homomorphism
- D. None of these

$$\begin{array}{ll}
O(Z_n) = 1 \\
Z_n = \{0, 1, 2, --- n-1\} \\
Z_5 = \{0, 1, 2, 3, 4\}
\end{array}$$

$$Z_5 = \{0, 1, 2, 3, 4\}$$

Note:-

(1)
$$f: \mathbb{Z}_m \to \mathbb{Z}_n$$
 defined by $f(x) = ax$ if $O(a) = k$ in x and x has elements of order k . then, $f(x) = ax$ is homomorphism.

- (2) If $f: \mathbb{Z}_m \to \mathbb{Z}_n$, Number of homeomorphism = g: c: d(m,n).
- (3) $f: \mathbb{Z} \to \mathbb{Z}: f(x) = kx$ is homomorphism. (i.e. Has Infinite Number of homomorphism)
- (4) $U(P^r) \approx Z\emptyset(p^r)$: p is prime.

$$U(9) = Z_{\phi_3^2} - Z_{\phi_9} - Z_6$$

$$O(U(49)) = ? U(47) = Z_{47-1} = Z_{46} = O(Z_{46}) = 46$$

$$U(47) \Rightarrow = Z_{42}$$

$$U(7^{2}) = Z_{049} = O(U(49)) = O(Z_{42}) = 42$$

$$y_{9-7} = y_{2}$$

$$y_{9-7} = y_{2}$$

- (5) U (m,n) \approx U (m) . U(n) : g.c.d(m,n) = 1.
- (6) $U(p) \approx Z_{p-1}$ $P-34 \mu \nu \tau \psi \omega \tau$ $O(U(7)) = Z_{7-1} = Z_6 G$
- (7) If $f: \mathbb{Z}_m \to \mathbb{Z}_n \times \mathbb{Z}_k$ number of homomorphism = g.c.d(m,n) x g.c.d(m,k).
- (8) $f: \mathbb{Z}_m \times \mathbb{Z}_L \to \mathbb{Z}_n \times \mathbb{Z}_k$, number of homomorphism $g_{m,n}$.

Q. IF
$$f: \mathbb{Z}_{12} \to \mathbb{Z}_8: f(x) = 2x$$
 is homomorphism?

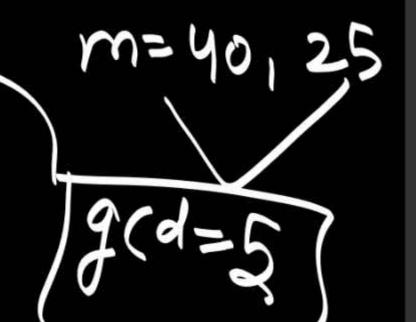
$$Z_{12} = \{0,1,2,3,4,-11\}$$

$$O(3) = 4$$

- A. Yes, homomorphism
 - B. No, Not homomorphism
 - C. May be homomorphism
 - D. None of these

Q. IF
$$f: \mathbb{Z}_{25} \to \mathbb{Z}_{40} = \text{How many}$$
 homomorphism?

- A. 40 homomorphism
- 3. 5 homomorphism
 - C. 25 homomorphism
 - D. 15 homomorphism



Q. f: U (13) $\rightarrow U$ (9), How many homomorphism?

A. 13 homomorphism

B. 19 homomorphism

C. 8 homomorphism

No. of Homomorphism & gcd (12,6) De homomorphism