

Quadratic Equations

Some Results on Roots of an Equation

- (i) Every n -degree equation has n roots.
- (ii) Every odd degree equation has at least one real root.

 If the coefficient of the highest degree term is positive,
- then the sign of this real root is opposite to the sign of the constant term.
- (iii) If the coefficient of the highest degree term of an even degree equation is positive and its constant term is

negative, then this equation has at least two real roots: one positive and one negative.

Output

Description:

Output

Description

- (iv) If there is only one change in sign in an equation then it has only one positive root.
- (v) If all terms of an equation are positive and it has no odd degree term, then it's all roots are imaginary.
- (vi) Between any two real roots of every polynomial equation f(x) = 0 there always exists a real root of the equation f(x) = 0

(vii) If f(x) is a real polynomial such that for two real numbers α , β ; f(alpha) and f(beta) have opposite signs, then equation f(x) = 0 will have at least one root lying between a and β .

Symmetric Expressions of the Roots

कल कर युक्टी

(i)
$$a^2 + \beta^2 =$$

(ii)
$$\frac{1}{\alpha} + \frac{1}{\beta} =$$

(iii)
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} =$$

(iv)
$$\alpha^2 + \alpha\beta + \beta^2 =$$

(v)
$$\alpha^2\beta + \beta^2\alpha =$$

(vi)
$$\alpha^3 + \beta^3 =$$

(vii)
$$\left(\frac{\alpha}{\beta}\right)^2 + \left(\frac{\beta}{\alpha}\right)^2 =$$

(viii)
$$\alpha^4 + \beta^4 =$$

Transformation of an Equation

If a, β are roots of the equation $ax^2 + bx + c = \hat{v}$

Roots	Transformation	Transformed Equation
ーペ=スコペ=	on x	
$-\alpha, -\beta$	$x \rightarrow -x$	$ax^2 - bx + c = 0$
$1/\alpha$, $1/\beta$	$x \rightarrow 1/x$	$cx^2 + bx + a = 0$
$k\alpha, k\beta$	$x \rightarrow x/k$	$ax^2 + bkx + ck^2 = 0$
α^2, β^2	$x \to \sqrt{x}$	$a^2x^2 - (b^2 - 2ac)x + c^2 = 0$
α^2, β^3	$x \rightarrow x^{1/3}$	$a^3x^2 + (b^2 - 3abc)x + c^3 = 0$
$\alpha + k, \beta + k$	$x \rightarrow (x - k)$	$ax^2 + (b - 2ak)x$
		$+(ak^2-bk+c)=0$

ax3+bx+c=0 अव वह equation क्यार $Q(x-2)^2 + b(x-2) + C = 9$ की जिस् जिस्में Roots $Q(x^2 + y - y + b + x - 2b + C = 0)$ अस्ट, हम्ट हो ? 0x2+49-40x+px-2p+c=0 ax-x(49-6)+49-26+c=0

ax+bx+c=o, de a(1x)+6(1x)+(=0 0x+6/x+C=0 9x2+6x+C2+29x61x+26(1x +29(x=0

वह एवा भात की जिए जिसके
रिक्क वरे व विदेशे a=Jx (9+8+c)=076+c+20E

Roots Under Particular Conditions

The nature of the roots of the equation $ax^2 + bx + c = 0$

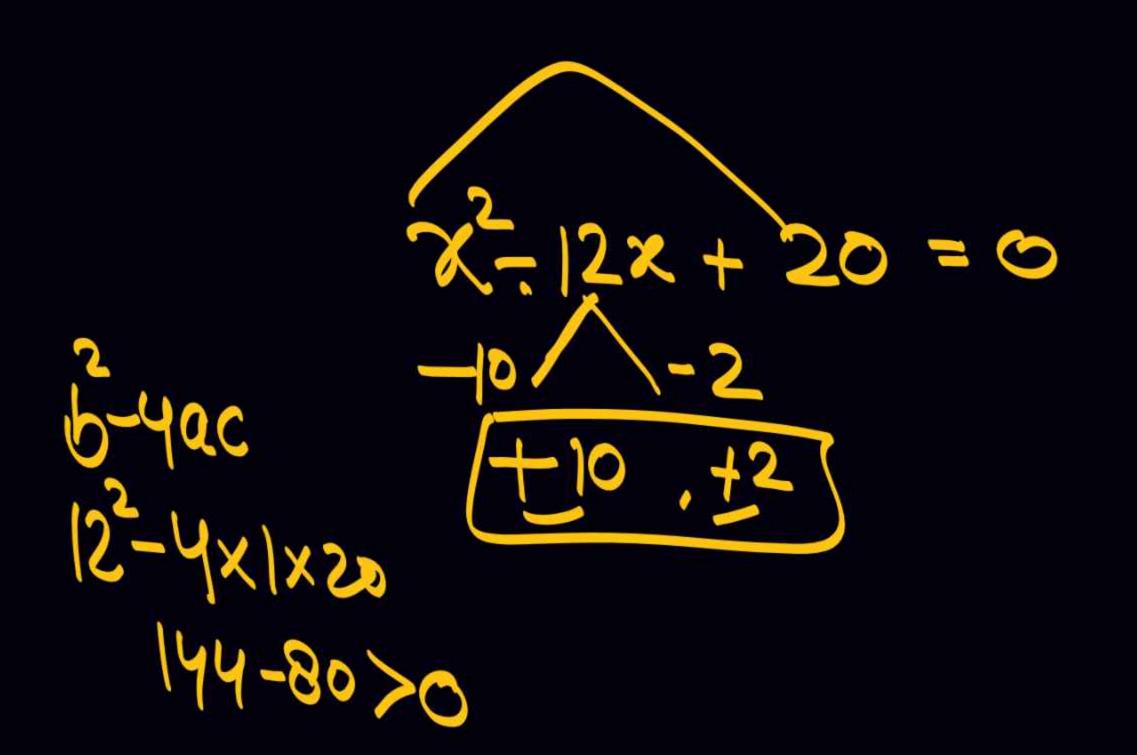
Condition	Nature of roots
a+b+c=0	Roots = 1, c/a
b = 0	roots are negative of
	each other
c = 0	One root = 0
b=c=0	Both roots = 0
a = c	Roots are reciprocals of each other

Condition	Nature of roots
a, c are in opposite sign	Real roots in opposite sign
$b^2-4ac \ge$	Real roots, both
0 and a, b, c are in same sign	negative
$b^2 - 4ac \ge 0$ and a, c are in same sign,	Real roots, both positive
b is in opposite sign	
b = 0; a , c are in same sign	Imaginary

$$x^2-5x-6=0$$

$$3x^2 - 5x + 3 = 0$$

$$3x^2-2x-1=0$$



Roal & Sitive

218 5-4ac≥0 a,b,C 22+18/42 2+18x+26=03, 41 Roots Eist? Sama (a) Road & positive (b) imaginary & positive (C) Roal & Negative (d) None of those

Quadratic Equations

Condition for Common Roots

The equation
$$a_1x^2 + b_1x + c_1 = 0$$
 and $a_2x^2 + b_2x + c_2 = 0$

Quadratic Equations

Conditions for some Correlations between the Roots

(i) Roots in the same ratio: The roots of the equation $a_1x^2 + b_1x + c_1 = 0$ and $a_2x^2 + b_2x^2 + b_2x + c_2 = 0$ are in the same ratio.

$$(i.e., \frac{\alpha_1}{\beta_1} = \alpha_2/\beta_2)$$
 then $\frac{b_1^2}{b_2^2} = \frac{a_1c_1}{a_2c_2}$

Example. If the roots of the equation $2x^2 + 3x + 1 = 0$ and $x^2 - x + \lambda = 0$ are in the same ratio then λ

(ii) One root k times the other: If one roots of the equation $ax^2 + bx + c = 0$ is k times the other root, then $(k+1)^2 - b^2$

$$\frac{(k+1)^2}{k} = \frac{b^2}{ac}$$

Example. If one root of the equation $x^2 + 3x + \lambda = 0$ is three times the other root, then λ .

2. If the equation $x^2 - bx + 1 = 0$ does not possess real roots, then which one of the following is correct?

यदि समीकरण $x^2 - bx + 1 = 0$ के वास्तविक मूल नहीं हैं, तो निम्नलिखित में से कौन सा सही है?

(a)
$$-3 < b < 3$$
 (b) $-2 < b < 2$

(c)
$$b > 2$$
 (d) $b < -2$

(d)
$$b < -2$$